skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kuang, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract  Spatial transcripome (ST) profiling can reveal cells’ structural organizations and functional roles in tissues. However, deciphering the spatial context of gene expressions in ST data is a challenge—the high-order structure hiding in whole transcriptome space over 2D/3D spatial coordinates requires modeling and detection of interpretable high-order elements and components for further functional analysis and interpretation. This paper presents a new method GraphTucker—graph-regularized Tucker tensor decomposition for learning high-order factorization in ST data. GraphTucker is based on a nonnegative Tucker decomposition algorithm regularized by a high-order graph that captures spatial relation among spots and functional relation among genes. In the experiments on several Visium and Stereo-seq datasets, the novelty and advantage of modeling multiway multilinear relationships among the components in Tucker decomposition are demonstrated as opposed to the Canonical Polyadic Decomposition and conventional matrix factorization models by evaluation of detecting spatial components of gene modules, clustering spatial coefficients for tissue segmentation and imputing complete spatial transcriptomes. The results of visualization show strong evidence that GraphTucker detect more interpretable spatial components in the context of the spatial domains in the tissues. Availability and implementationhttps://github.com/kuanglab/GraphTucker. 
    more » « less
  2. Abstract MotivationSpatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue architecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice. Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies. Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative approach to decoding tissue complexity. ResultsHere, we present a graph neural network based framework to predict the spatial expression of highly expressed genes from tissue histological images. Extensive experiments on two separate breast cancer data cohorts demonstrate that our method improves the prediction performance compared to the state-of-the-art, and that our model can be used to better delineate spatial domains of biological interest. Availability and implementationhttps://github.com/song0309/asGNN/ 
    more » « less
  3. Abstract Spatially-resolved RNA profiling has now been widely used to understand cells’ structural organizations and functional roles in tissues, yet it is challenging to reconstruct the whole spatial transcriptomes due to various inherent technical limitations in tissue section preparation and RNA capture and fixation in the application of the spatial RNA profiling technologies. Here, we introduce a graph-guided neural tensor decomposition (GNTD) model for reconstructing whole spatial transcriptomes in tissues. GNTD employs a hierarchical tensor structure and formulation to explicitly model the high-order spatial gene expression data with a hierarchical nonlinear decomposition in a three-layer neural network, enhanced by spatial relations among the capture spots and gene functional relations for accurate reconstruction from highly sparse spatial profiling data. Extensive experiments on 22 Visium spatial transcriptomics datasets and 3 high-resolution Stereo-seq datasets as well as simulation data demonstrate that GNTD consistently improves the imputation accuracy in cross-validations driven by nonlinear tensor decomposition and incorporation of spatial and functional information, and confirm that the imputed spatial transcriptomes provide a more complete gene expression landscape for downstream analyses of cell/spot clustering for tissue segmentation, and spatial gene expression clustering and visualizations. 
    more » « less
  4. Martelli, Pier Luigi (Ed.)
    Abstract Motivation Clustering spatial-resolved gene expression is an essential analysis to reveal gene activities in the underlying morphological context by their functional roles. However, conventional clustering analysis does not consider gene expression co-localizations in tissue for detecting spatial expression patterns or functional relationships among the genes for biological interpretation in the spatial context. In this article, we present a convolutional neural network (CNN) regularized by the graph of protein–protein interaction (PPI) network to cluster spatially resolved gene expression. This method improves the coherence of spatial patterns and provides biological interpretation of the gene clusters in the spatial context by exploiting the spatial localization by convolution and gene functional relationships by graph-Laplacian regularization. Results In this study, we tested clustering the spatially variable genes or all expressed genes in the transcriptome in 22 Visium spatial transcriptomics datasets of different tissue sections publicly available from 10× Genomics and spatialLIBD. The results demonstrate that the PPI-regularized CNN constantly detects gene clusters with coherent spatial patterns and significantly enriched by gene functions with the state-of-the-art performance. Additional case studies on mouse kidney tissue and human breast cancer tissue suggest that the PPI-regularized CNN also detects spatially co-expressed genes to define the corresponding morphological context in the tissue with valuable insights. Availability and implementation Source code is available at https://github.com/kuanglab/CNN-PReg. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract U2 auxiliary factor 1 (U2AF1) functions in 3′-splice site selection during pre-mRNA processing. Alternative usage of duplicated tandem exons in U2AF1 produces two isoforms, U2AF1a and U2AF1b, but their functional differences are unappreciated due to their homology. Through integrative approaches of genome editing, customized-transcriptome profiling and crosslinking-mediated interactome analyses, we discovered that the expression of U2AF1 isoforms is controlled by mTOR and they exhibit a distinctive molecular profile for the splice site and protein interactomes. Mechanistic dissection of mutually exclusive alternative splicing events revealed that U2AF1 isoforms’ inherent differential preferences of nucleotide sequences and their stoichiometry determine the 3′-splice site. Importantly, U2AF1a-driven transcriptomes feature alternative splicing events in the 5′-untranslated region (5′-UTR) that are favorable for translation. These findings unveil distinct roles of duplicated tandem exon-derived U2AF1 isoforms in the regulation of the transcriptome and suggest U2AF1a-driven 5′-UTR alternative splicing as a molecular mechanism of mTOR-regulated translational control. 
    more » « less
  6. Abstract MotivationAccurate estimation of transcript isoform abundance is critical for downstream transcriptome analyses and can lead to precise molecular mechanisms for understanding complex human diseases, like cancer. Simplex mRNA Sequencing (RNA-Seq) based isoform quantification approaches are facing the challenges of inherent sampling bias and unidentifiable read origins. A large-scale experiment shows that the consistency between RNA-Seq and other mRNA quantification platforms is relatively low at the isoform level compared to the gene level. In this project, we developed a platform-integrated model for transcript quantification (IntMTQ) to improve the performance of RNA-Seq on isoform expression estimation. IntMTQ, which benefits from the mRNA expressions reported by the other platforms, provides more precise RNA-Seq-based isoform quantification and leads to more accurate molecular signatures for disease phenotype prediction. ResultsIn the experiments to assess the quality of isoform expression estimated by IntMTQ, we designed three tasks for clustering and classification of 46 cancer cell lines with four different mRNA quantification platforms, including newly developed NanoString’s nCounter technology. The results demonstrate that the isoform expressions learned by IntMTQ consistently provide more and better molecular features for downstream analyses compared with five baseline algorithms which consider RNA-Seq data only. An independent RT-qPCR experiment on seven genes in twelve cancer cell lines showed that the IntMTQ improved overall transcript quantification. The platform-integrated algorithms could be applied to large-scale cancer studies, such as The Cancer Genome Atlas (TCGA), with both RNA-Seq and array-based platforms available. Availability and implementationSource code is available at: https://github.com/CompbioLabUcf/IntMTQ. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less